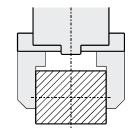
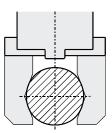
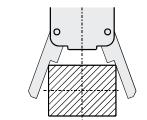
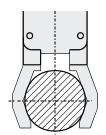
Gripper Basics

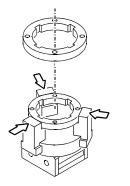

Call our EOAT Engineering Department for Sizing Assistance

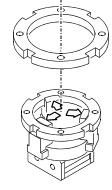

Parallel gripper


The jaws movement is on a straight line.

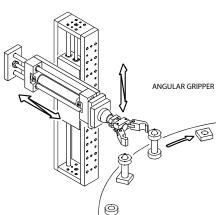

Angular gripper

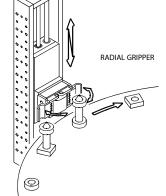
The jaws are pivoted and move on an angular line with a $10^{\circ} - 40^{\circ}$ angle.



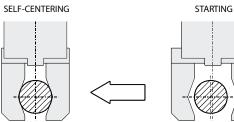


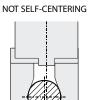
Three jaws gripper


Is generally used to handle loads of cylindrical shapes, maintaing the same axis, even if different diameter parts are being gripped.



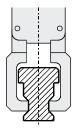
Radial gripper


The jaws move on an angular line with a 90° angle; because of this the moving back can be avoided in order to withdraw the gripping tools from the working plane.

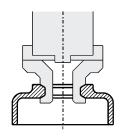


Self-centering

On the pneumatic gripper generally the jaws are symmetrically moved, and because of this, the load is centered.

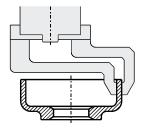


Gripper Basics

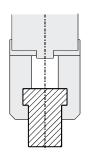

Call our EOAT Engineering Department for Sizing Assistance

Gripping force

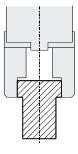
They must be built as short and light as possible, to reach the maximum gripping force, keeping the inertia to a minimum.

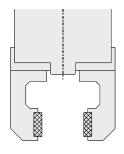


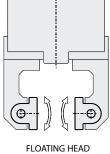
EXTERNAL GRIPPING

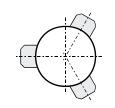


INTERNAL GRIPPING


3 POINT GRIPPING WITH 2 JAWS

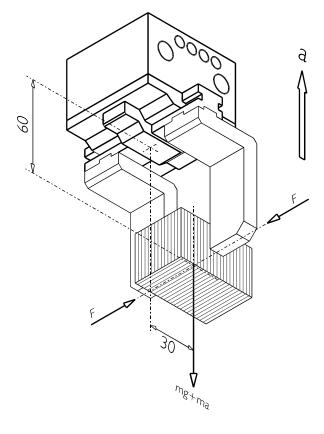

INTERNAL - EXTERNAL GRIPPING


POSITIVE GRIPPING



FORCE GRIPPING

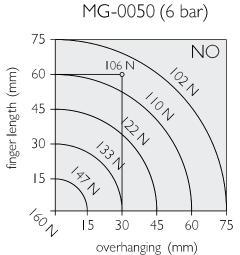
RUBBER



Gripper Calculation Example

Calculation example:

A 1kg load is to handle as in the figure with a coefficient of friction $\mu = 0.1$. The gripper, Gimatic MG-0050, moves upward with acceleration $a=4m/s^2$. Verify that the safety factor is at least $\eta=1.5$


m = mass

- g = acceleration of gravity
- a = acceleration of handling

Call our EOAT Engineering Department for Sizing Assistance

- $\mu = coefficient of friction$
- $\eta = safety factor$

$$m = 1 \text{ kg} g = 9.8 \text{ m/s}^2 a = 4 \text{ m/s}^2 \mu = 0.1 \eta = 1.5$$

F = 106N

$$\eta m(g+a) = 2\mu F$$

 $\eta = \frac{2\mu F}{m(g+a)} = \frac{2x0, 1 \times 106}{1(9,8+4)} = 1,536$ OK

Engineering & Reference